
Create a WebGL based application that calculates
and visualises the OLAN(One letter aerobatic
notation) catalogue in the form of a 3D plane

performing aerobatic manoeuvres

Report Name Outline Project Specification
Author (User Id) Craig Heptinstall (crh13)
Supervisor (User Id) Neal Snooke (nns)

Module CS39440
Degree Scheme G601 (Software Engineering)

Date February 3, 2015
Revision 1.0
Status Release



Outline Project Specification - 1.0 (Release) Craig Heptinstall (crh13)

1 Project description

My major project will be looking into the implementation of a WebGL flight simulator, though
more importantly it will be based from manoeuvres outlined in the OLAN [4](One letter aer-
obatic notation)/Open Areo [7] (Newer, updated and open source version of OLAN) format.
The simulator should be web based, so run through any WebGL compatible browsers(Chrome,
Opera, Firefox).
In more specific detail, the simulator should firstly allow for a range of different inputs(as string
values) each of which should represent different manoeuvres according to OLAN. These will
be space separated, and the previous move should link to the next in the most fluid means
possible. Once the string of notations have been read in, then the system will use a list of pre-
defined instructions from a JSON file which will allow each of the notations to be converted
into a set of broken procedural movements(rotations, flips, angled movements).
Currently, there is a standard for drawing out these manoeuvres known as Aresti [8]. In addi-
tion to this, there is already current systems that allow input of OLAN, and ribbon diagrams
are produced. These ribbon diagrams entail a 3d ribbon shape of the moves, showing where
both tips of the wings would be on a plane. However, I am to improve on this, by making my
application show the moves live, in a more aesthetic format. The ribbon will not be shown, but
instead a plane will be shown flying the course defined, with smoke trails showing where it
has already flown.
To help the system achieve the different manoeuvres and physics required to perform them, I
will be considering the use of a set of libraries such as Three.js [9] and glMatrix [6]. Both these
will provide some easier predefined methods allowing to perform some of the movements de-
scribed previously.
Alongside the main functionality, additional features such as different camera angles, allow-
ing the saving and loading of entire diagrams and adding pyshics will be considered. These
though will be only be implimented once a good basis for the program is established. Overall,
the main challenges that I will come across during this project will be issues in turning each
OLAN figure into the appropriate translation in terms of the plane. With the project deliver-
ing a WebGL based product, it is easy to see the vast amount of the project will be created in
Javascript.

2 Proposed tasks

In order to perform my project, I can break down the process into a selection for different tasks:

1. Read up on the OLAN and Aresti [8] notations- This will involve looking through the
various possible manoeuvres that aerobatic planes can fly.

2. Investigate various WebGL technologies, especially Three.js, to see what forms of move-
ments are possible using the library. For this I can spend plenty of time looking at other
projects [5] around the web to see how certain transformations are done to objects on a
canvas.

3. Look into how the site should look on completion- This will consider the size of the can-
vas on the site, and if mobile users should be able to view the product.

4. Look at the example OLAN to Aresti online program- Analyse each of the different ribbon
diagrams, and see how different OLAN figures relate to one another. This key process
will allow me to see what primary moves the entire collective notations can be made
from. This could be compared to how every colour can be created from red, green, blue.

A WebGL OLAN flight simulator 1 of 3



Craig Heptinstall (crh13) Outline Project Specification - 1.0 (Release)

5. Create a set of functions relating to the findings to allow the program to create some form
of ribbons, which can then be ’flown” by an object(a plane). This should utilise some form
of stored list of moves and required actions.

6. Combine these into a clean, good looking WebGL product, to allow for inputs of OLAN,
and controls such as camera angles.

7. Throughout the process, blog daily to log each task and time taken- This will allow an
easier to create set of graphs, tables and references to project time taken on certain pro-
cesses.

3 Project deliverables

Following on from the previous section regarding the list of proposed tasks, I can relate these to
a list of deliverables that the project shoudl produce. Although the simulator should primarily
be an internet application acessable through a web browser, there will be a set of other items
that will be created. I have chosen to create a blog, that will act like a form of self- documen-
tation that should build up to create a work log. This will eventually be usefull in terms of
relating it to a Gantt chart to see how well I am following the project plan. However, because I
have decided on using an FDD (feature driven development) methodology to create my project
the Gantt chart should allow for more flexibility.
Before I can impliment the simulator, I will also have to deliever a number of different planning
documentation pieces. The first of these will be an analysis of botht the Aresti and OLAN lan-
gauges, which will allow me to understand how each manoeuver is broken down, and which
primary elements can be combined to make other moves. After discovering these, it will be
much easier to then create more broader methods to allow easier creation of more complicated
simulations.
Alongside this, a table shoud be produced to further explain each move, and break down any
where parameters should be needed. For instance, the size of a loop can be depicted by a ra-
dius size and height. Again, this will furtehr broaden the methods I will need to code thus
producing much more flexible algorithms that can handle the maximum amount of different
manoeuvers. The table should form a basis for my planning documentation. My project plan
will then begin the FDD approach I am wanting to take, starting with a break down such as a
list of features I would like the simulator to contain on completion. Once this is generated, I
will then be able to break these into groups, each of which will be designed, implimented and
tested.
Together with the blog, my implementation environment will be a GitHub based one, to allow
for ease of working on the project in different places/ on different systems, and also to integrate
it with any build servers I may want to use. In this case, I will be using Travis CI [2] to build
my tests (which will be written in QUnit [3] and run with Grunt [1])which will be useful for
finding out any bugs or errors I may create in the process of implementing certain features.
To generalise on the final delverable and to come back to the first section of this paper, there
should be a Web based application allowing the uer to input OLAN and hit a button allowing
them to view (at different angles), control physics, speed and size of a set of defined manoevers
with the functionality to save and load entire routines.

2 of 3 A WebGL OLAN flight simulator



Outline Project Specification - 1.0 (Release) Craig Heptinstall (crh13)

Annotated Bibliography

[1] B. Alman, “Gruntjs task runner,” http://gruntjs.com, Sept. 2011, accessed January 2014.

GruntJS task runner for running QUnit tests.

[2] T. CI, “Travis ci for my github project,” https://travis-ci.org/craighep/Dissertation, Jan.
2014, accessed January 2014.

Travis CI set up for my dissertation GitHub project. Shows status of build after
running QUnit tests.

[3] T. J. Foundation, “Introduction to unit testing,” http://qunitjs.com/intro/, Jan. 2014, ac-
cessed January 2014.

QUnit introduction and example code for performing QUnit tests on Javascript.

[4] M. Golan, “Olan- one letter aerobatic notation,” http://web.archive.org/web/
20080420201845/http://www.aerobatics.org.il/olan/welcome.php, Apr. 2008, accessed
January 2014.

Introduces the concept of OLAN, and the different range of notations. Please
note, this has been taken down, due to copywrite reasons, so OpenAreo has re-
placed it. See Open Areo reference for details.

[5] D. S. Lyons, “Three.js example and introduction,” http://davidscottlyons.com/threejs/
presentations/frontporch14, 2012, accessed January 2014.

A demo and introduction to the Three.js library. Cool demos of different affects
within a powerpoint style presentation explaining how to do roatations, move-
ments, orbits, lighting etc.

[6] C. MacKenzie, “Openaero aerobatic software,” http://glmatrix.net, Nov. 2011, accessed
January 2014.

glMatrix library for WebGL products. Allows easier transformations to matrices
and handling of vertices.

[7] R. Mass, “Openaero aerobatic software,” http://www.openaero.net/, 2012, accessed Jan-
uary 2014.

An online software that creates sequenced diagrams based on OLAN. Used to
find out what each notation looks like, and how they link up.

[8] L. Richardson, “Openaero arobatic software,” http://www.slopeaerobatics.com/articles/
an-introduction-to-slope-aerobatics/aresti-notation-tutorial/, Dec. 2011, accessed January
2014.

Explanation of the Aresti diagrams, including how parameters are used.

[9] G. user:Mr.Doob, “Three.js library,” https://github.com/mrdoob/three.js, 2009, accessed
January 2014.

The Three.js library, which I will be using throughout my project. Allows for a
vast array fo transfomation and effects.

A WebGL OLAN flight simulator 3 of 3


